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A method is presented to carry out a transient simulation of eddy current problems with nonlinear materials. Coils are voltage-
driven. The magnetic field due to currents in coils are considered by their Biot-Savart-fields. The magnetic vector potential is used
in the finite element formulation. The time stepping method is based on implicit Euler. The arising nonlinear equation system is split
into two parts, each part is solved separately by Newton’s method. The inrush current of a benchmark problem is studied.
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I. INTRODUCTION

THE METHOD presented here facilitates a transient finite
element simulation of nonlinear eddy current problems

with the magnetic vector potential (MVP) involving voltage-
driven coils. An early work for a voltage-driven coil and the
finite element method (FEM) is [1]. Unlike here a method
based on harmonic balance and current vector potential has
been introduced in [2]. The Biot-Savart-field (BSF) caused by
a current in a coil is calculated only once and then accordingly
scaled to the course of time. The arising nonlinear equation
system is split into two parts, Newton’s method is applied
to each part separately. The two parts are alternately solved
until a stopping criterion is fulfilled. Induction effects in the
windings are neglected (stranded coils). A solution for that
can be found for linear materials and BSF in [3]. The paper
presents the case of one coil in detail, the extension to several
coils is straight forward and outlined at the end. A study of a
numerical benchmark is presented.

II. EDDY CURRENT PROBLEM

A. Boundary Value Problem

The eddy current problem to be solved is sketched in Fig. 1.
It consists of a conducting domain (iron) Ωc and air Ω0, i.e.,
Ω = Ωc ∪ Ω0 with the boundary Γ = ΓD ∪ ΓN . The eddy
current problem with the MVP A in the time domain reads as
where J0 in (1) stands for a known source current density in

Fig. 1. One eighth of the boundary value problem, coil with laminated iron
core.
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Ωs ⊂ Ω0, α in (2) represents a magnetic flux and K in (3)
describes a surface current density. The material parameters are
the magnetic permeability µ(A) and the electric conductivity
σ, respectively.

B. Weak Form

Equations (1) to (3) lead to the following weak form for the
FEM. Find Ah ∈ Vα := {Ah ∈ Vh : Ah × n = αh on Γ},
such that∫
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J0 · vh dΩ +
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for all vh ∈ V0 := {vh ∈ Vh : vh×n = 0 on ΓD}, where Vh
is a finite element subspace of H(curl,Ω).
For the sake of clarity K has been omitted in the following
considerations. Regularization is applied in Ω0 [4]. Hexahedral
edge elements [5] were used to facilitate the modeling of
laminates.

C. Voltage-driven Coil and Biot-Savart-Field

The network equation

u0(t) = i(t)Rs −
dφ(t)

dt
(5)

with voltage u0 of the voltage source, the current i, the series
resistor Rs and the magnetic flux φ has to be solved together
with (4) simultaneously. Rearranging of the linear form in (4)
yields ∫
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with the turn density τ and the BSF
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where rF and rS are the field and the source point. Hence,
h0 is the BSF of a unit current and note, that thanks to τ =
curlh0 the volume of the coil need not to be modeled by finite
elements. At the same time rearranging of the second term on
the right hand side of (5) leads to
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with F , E, S, w and eF , respectively, the cross-section of
the coil, the electric field strength, the average path length of a
winding, the number of turns and the unit vector of the surface
F , respectively.

D. Time Stepping

Evaluation of (4) and considering (6) on the one hand and
(5) with (8) on the other results in the nonlinear ordinary
differential equation system

S(a)a(t) +M
d

dt
a(t)− bi(t) = 0 (9)

−bT d
dt
a(t) + i(t)Rs = u0(t) (10)

In (9) and (10), a, b, S and M , respectively, are the unknown
vector of the MVP, the vector according to h0 and (6), the
stiffness matrix and the mass matrix, respectively. Consider-
ing implicit Euler for time stepping provides the system of
nonlinear equations
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to be solved, where ∆t is the time step and k the index for
the time instant tk = k∆t. The system of (11) and (12) is
symmetric.

E. Newton’s method

The system to be solved is split into two parts according to
(11) and (12), i.e. the unknown vector a and the current i. Let
F (ak+1) = 0 and G(ik+1) = 0 be the explicit representations
of (11) and (12). Applying Newton’s method to (11) and (12)
yields:
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Index l denotes the nonlinear iterations. Newton’s method to
solve (13) is supplemented by a line search using a correspond-
ing functional of (4). The unknown parameter α indicates the
line search. The Jacobian matrices are:
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has to be solved first.
While ak+1 of (13) is solved iteratively the current ik is
constant and known and vice versa. Stopping criteria are both
a minimal change in ak+1 and ik+1 and a maximal number of
iterations l.

The extension to an arbitrary number n of coils is straight-
forward. To this end (5) is replaced by the corresponding
n network equations, (6) and (8) are written for each coil
resulting in n different vectors bi, i = 1, ..., n.

III. NUMERICAL EXAMPLE

The 3D numerical benchmark consists of a laminated iron
core (isotopic: M400-50A, 183 laminates) inserted in a cylin-
drical coil as indicated in Fig. 1. A handmade hexahedral
mesh was created to simplify the modeling of the laminates.
The Biot-Savart field was used to avoid the modeling of the
cylindrical coil. The ohmic resistor Rs comprises the internal
resistor of the coil and a series resistor. A study of inrush
currents are shown in Fig. 2. Although the currents do not
reflect the nonlinearity, the magnetic flux in the outer most
laminate is clearly nonlinear (not shown here).

Fig. 2. Study of inrush currents for different Rs, ∆t and u0(t).
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